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a b s t r a c t

The leader–follower consensus problem for multi-agent systems over directed random graphs is
investigated.Motivated by the fact that inter-agent communication can be subject to random failurewhen
agents perform tasks in a complex environment, a directed randomgraph is used tomodel the random loss
of communication between agents, where the connection of the directed edge in the graph is assumed to
be probabilistic and evolves according to a two-state Markov Model. In the leader–follower network, the
leaders maintain a constant desired state and the followers update their states by communicating with
local neighbors over the random communication network. Based on convex properties and a stochastic
version of LaSalle’s Invariance Principle, almost sure convergence of the followers’ states to the convex
hull spanned by the leaders’ states is established for the leader–follower random network. A numerical
simulation is provided to demonstrate the developed result.

© 2015 Elsevier Ltd. All rights reserved.
1. Introduction

Consensus problems that seek to agree upon certain quantities
of interest have attracted significant research attention. A com-
prehensive review of consensus problems is provided in Olfati-
Saber, Fax, and Murray (2007) and Ren, Beard, and Atkins (2007).
To achieve consensus, agents are generally required to exchange
information over a communication network as a means to coordi-
nate their behaviors, such as achieving a common heading direc-
tion in flocking problems (Jadbabaie, Lin, & Morse, 2003; Tanner,
Jadbabaie, & Pappas, 2007), agreeing on the group average in dis-
tributed sensing (Zhu &Martínez, 2010), or achieving consensus in
rendezvous and formation control problems (Dimarogonas & Kyr-
iakopoulos, 2007; Kan, Navaravong, Shea, Pasiliao, & Dixon, 2015),
to name a few. In most of these applications, consistent informa-
tion exchange between agents in either an undirected or directed
manner is a common assumption to ensure full cooperation among
team members. However, when agents operate in a complex en-
vironment, the inter-agent communication could be subject to
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random failure due to either interference or unpredictable envi-
ronmental disturbance. Since task completion relies on commu-
nication and interaction among agents, achieving consensus over
such a stochastic communication network can be challenging.

Leader–follower containment control is a particular class of
consensus problems, in which the networked multi-agent system
consists of leader agents and follower agents. Generally, the leaders
are a small subset of the agents, which are informed of the global
task objectives, while the followers act under the influence of both
neighboring agents and the leaders through local interactions. A
main objective in leader–follower containment control is to drive
all followers’ states to a desired destination determined by the
leaders’ states. Hybrid control schemes are developed in Ji, Ferrari-
Trecate, Egerstedt and Buffa (2008) to drive the dynamic follower
agents into a convex polytope spanned by the stationary leader
agents, where the local interaction among agents is modeled as
an undirected graph. The work of Ji et al. (2008) is then extended
to multiple stationary and dynamic leaders under a directed
interaction graph in Cao, Ren, and Egerstedt (2012), Li, Ren, and
Xu (2012) and Meng, Ren, and You (2010). Containment control
for a leader–follower network under a switching graph is studied
in Lou and Hong (2012) and Notarstefano, Egerstedt, and Haque
(2011). In Kan, Klotz, and Dixon (2015), containment control is
applied to a social network to regulate the emotional states of
individuals to a desired end. For networked Lagrangian systems
with parametric uncertainties, distributed containment control is
developed in Mei, Ren, and Ma (2012). In the aforementioned
works, a deterministic dynamic system is considered, where
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dynamic agents communicate and coordinate with other agents
over an undirected or directed deterministic communication
network. Mean-square containment control of a multi-agent
system with communication noise is considered in Wang, Cheng,
Hou, Tan, andWang (2014). Since the results developed in Cao et al.
(2012), Ji et al. (2008), Kan et al. (2015), Li et al. (2012), Lou and
Hong (2012), Mei et al. (2012), Meng et al. (2010), Notarstefano
et al. (2011),Wang et al. (2014)may not be applicable to stochastic
communication networkswhere the existing communication links
experience random loss, an extension of the classical containment
control from the deterministic network to the stochastic network
is desirable.

Building on graph theory and probability theory, several
consensus results have been developed for random graphs. One of
the earliest consensus results over an undirected random network
is reported in Hatano and Mesbahi (2005), which proves that
agreement can be achieved almost surely if the communication
links between any pair of agents are activated independently with
a common probability. The undirected random graph in Hatano
and Mesbahi (2005) is extended to a general class of directed
random graphs in Porfiri and Stilwell (2007) and Wu (2006).
Necessary and sufficient conditions for consensus are developed in
Tahbaz-Salehi and Jadbabaie (2008) for graphs that are generated
by an ergodic and stationary random process. Mean-square-robust
consensus over a network with communication noise and random
packet loss is considered in the work of Zhang and Tian (2010)
and Zhang and Tian (2012). Stochastic consensus for a multi-
agent systemwith communication noise andMarkovian switching
topologies is investigated in Wang, Cheng, Ren, Hou, and Tan
(2015). However, the convergence results reported in Hatano and
Mesbahi (2005), Porfiri and Stilwell (2007), Tahbaz-Salehi and
Jadbabaie (2008), Wang et al. (2015), Wu (2006), Zhang and Tian
(2010), Zhang and Tian (2012) are only developed for leaderless
networks without considering how the leaders can influence the
followers to a desired end.

In this paper, the classical leader–follower containment control
problem for deterministic systems is extended to a stochastic sce-
nario. The leader–follower network is tasked to drive all followers
into a prespecified destination area (i.e., the convex hull spanned
by the leaders’ states) under the influence of the leaders. Only the
leaders are assumed to have the knowledge of the destination. To
move toward the specified destination, the followers communi-
cate and update their states with neighboring agents over a com-
munication network. Since wireless communication is subject to
random failure due to factors such as fading and packet loss, the
inter-agent communication is modeled as a random graph, where
each link evolves according to a two-state Markov Model to model
the random loss of the existing communication link. In addition,
the random communication network is assumed to be directed.
Rather than assuming that all edges share a common edge prob-
ability and evolve independently with their previous edge connec-
tion states as in Hatano and Mesbahi (2005), different edges are
allowed to have different transition probabilities in the current
work that evolve according to a Markov Model, which can be used
to model a large class of real-world networks to reflect the de-
pendence of the current system states on their previous states.
Moreover, compared to the works of Hatano and Mesbahi (2005),
Porfiri and Stilwell (2007), Tahbaz-Salehi and Jadbabaie (2008),Wu
(2006), a hierarchical network structure (i.e., leader–follower net-
work) is considered where one-sided influence of leaders is used
to affect the desired behaviors of the followers. Almost sure con-
vergence of the followers’ states to the convex hull spanned by the
leaders’ states over a random communication graph is then estab-
lished via the convex properties in Boyd and Vandenberghe (2004)
and a stochastic version of LaSalle’s Invariance Theorem (Kushner,
1971).
2. Problem formulation

A multi-agent system consisting of n agents that communicate
over wireless channels is considered. The wireless channels have
intermittent connectivity, which cause the connections among the
agents to vary with time. The communication graph is modeled
as a temporal network, or time-varying graph, G(t) = (V, E(t)).
The vertices V represent the agents, which do not vary with
time. The edges E(t) represent the connections among the agents
and do vary with time. The flow of information is assumed to
be asymmetric, so the edges in E(t) ⊂ V × V are directed.
Specifically, the directed edge


vj, vi


∈ E indicates that node vi

can receive information from node vj, but vj may not necessarily
receive information from vi. In the directed edge


vj, vi


, vi and vj

are referred to as the child node and the parent node, respectively.

2.1. Directed random graph

Consider first the graph at one particular time, say t = t0. Then,
suppressing the time dependence, G = (V, E) is a directed graph.
The graphG is called a directed randomgraph if the set of edgesE is
randomly determined. Let Ē ⊂ V ×V be a set of potential directed
edges connecting the nodes in V . Each potential edge


vj, vi


is

associated with a weight wij ∈ R+, which indicates how node vi
evaluates the information collected from vj. We assume that the
weight wij for each


vj, vi


is known initially and there are no

self loops, so (vi, vi) ∉ Ē, i = 1, 2, . . . , n. Associated with each
potential edge


vj, vi


∈ Ē , let there be aBernoulli randomvariable

δij. An edge

vj, vi


∈ Ē will exist in E if δij = 1 and will not exist

in E if δij = 0. It is assumed that, for different edges, the

δij


are

statistically independent.
Now, consider the temporal network, G(t), which consists of

a time sequence of directed random graphs in which the edge
set varies with t . In particular, each edge (i, j) evolves according
to a two-state homogeneous Markov process δij(t) for i, j ∈

{1, 2, . . . , n} with stationary state transition probability pij ∈

(0, 1], which indicates that, at the next time instant t ′, the edge
(i, j) will change its state to δij


t ′


= 1 − δij(t) with probability pij
and will remain the previous state δij


t ′


= δij(t) with probability
1 − pij.

Assumption 1. The random processes

δij(t)


do not change

infinitely fast, and thuswe can choose a sampling time∆t such that
with arbitrarily high probability, δij(t) = δij(t + t0) if 0 ≤ t0 < ∆t
for all i, j ∈ {1, 2, . . . , n}.

Note that Assumption 1 will be true for any real system. For
example, let T0 and T1 denote the expected dwell times in states
0 and 1 for the Markov process δij(t), respectively. Then, the
probability of staying in the same state during an observation
period can be made arbitrarily large by selecting an appropriate
∆t . For example, the probability of remaining in state 0 during an
interval of length ∆t is e−∆t/T0 .

We assume that the sequence of random graphs can be
discretized in the following way. Let tk = k∆t , k ∈ Z+ be a
time sequence, where ∆t ∈ R+ is a sufficiently small sampling
period during which we may assume the edge set is constant over
each time interval [tk, tk+1). Let G (k) denote the random graph
G (t) at t = tk. Note that G (k) is drawn from a finite sample
space, which we denote by Ḡ = {G1, . . . , GM}, and

Ḡ ≤ 2|Ē|,
which is determined by the power set of Ē . In a directed graph,
a directed path from node v1 to node vk is a sequence of edges
(v1, v2) , (v2, v3) , . . . , (vi, vk). If a directed graph contains a
directed spanning tree, every node has exactly one parent node
except for one node, called the root, and the root has directed paths
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to every other node. A directed graph is called strongly connected if
there exists a directed path from every node to every other node in
the graph. The weighted adjacency matrix A (k) =


aij (k)


∈ Rn×n

of the directed random graph G (k) is

aij (k) = wijδij (k) , (1)

where wij ∈ R+ is the edge weight. The Laplacian matrix L (k) is
then defined as L (k) = D (k) − A (k), where D (k) ,


dij (k)


∈

RN×N is a diagonal matrix with the diagonal entry dii (k) =N
j=1 aij (k), and the off-diagonal entry dij (k) = 0 for ∀i ≠ j.

Although A is a random matrix, the Laplacian matrix L is always a
zero row sum matrix by its construction, which indicates that 0 is
always an eigenvalue of Lwith the corresponding right eigenvector
of 1 = [1, . . . , 1]T ∈ Rn.

2.2. Leader–follower network over directed random graphs

Consider a multi-agent system composed of n agents that
interact over a temporal network G (t) = (V, E (t)), where, at
each time, the graph G(t) is a directed random graph, as described
in Section 2.1. Suppose that the n agents in V are partitioned
into sets of VL with nL ∈ Z+ leaders and VF with nf ∈ Z+

followers. Let xi (k) ∈ Rd denote the states (e.g., the Euclidean
position) of agent vi ∈ V at the time instant tk. Only the leaders are
assumed to have the immutable and desired states that specifies
the locations of the destination area where all agents are required
to meet. The followers can only communicate with neighboring
agents and update their states over the random communication
graphG(t). Some directed graphsGi ∈ Ḡ can even be disconnected.
Let GT =


V, E


be the graph that contains all possible edges for

the graphs in Ḡ. To ensure the followers can be influenced by the
leaders to the desired destination area over the directed random
network, we introduce the following assumptions.

Assumption 2. It is assumed that GT ∈ Ḡ and Pr
k+nf −1

j=k G (j) =

GT


> 0 for all k.

Note that Assumption 2 will be true in many real systems and
practical models. For instance, it will be true for the MarkovModel
described after Assumption 1 if the Markov processes for the
different edges are statistically independent. Such independent
MarkovModels can be used tomodel the effects of channel outages
caused by multipath propagation. However, independence is not
required andmay not be present in some scenarios. For instance, if
communication across the network is randomly blocked by a time-
varying jammer, then the links may be completely dependent and
yet Assumption 2 still holds.

Assumption 3. The graph GT ∈ Ḡ has a directed spanning tree,
where, for each follower vi ∈ VF , there exists at least one leader
that has a directed path to the follower vi.

Assumption 3 implies that the set of leaders act as the roots of the
directed spanning tree in GT , which indicates the leaders have an
influence directly or indirectly on all followers through a series
of directed paths in the network. Different from the objective in
Hatano and Mesbahi (2005) and Porfiri and Stilwell (2007), where
every node has a probability to connect with every other node in
the network, this work relaxes the constraint of having a strongly
connected graph.

2.3. Objective

Definition 1 (Boyd & Vandenberghe, 2004, Ch. 2). For a set of points
z , {z1, . . . , zn}, the convex hull Co (z) is defined as the minimal
set containing all points in z, satisfying

Co (z) ,


n

i=1

αizi

zi ∈ z, αi > 0,
n

i=1

αi = 1


.

Definition 2 (Khalil, 2002, Ch. 4). A state z (k) approaches a set M
as tk goes to infinity (i.e., z (k) → M as tk → ∞), if for each ε > 0
there exists a T > 0 such that dist (z (k) , M) < ε for tk > T , where
dist (z (k) , M) denotes the distance from a point z (k) to a set M .
More precisely,

dist (z (k) , M) , inf
y∈M

∥z (k) − y∥ , (2)

which is the smallest distance from z (k) to any point in M.

To avoid notational confusion, let x (k) ,

xT1 (k) , . . . , xTn (k)

T
denote the stacked vector of all deterministic states xi (k), vi ∈ V ,
and X (k) ,


XT

1 (k) , . . . ,XT
n (k)

T denote the random variables
that represent the random states of vi ∈ V at time k. Let xF (k) and
xL (k) denote the followers’ states xi (k) , vi ∈ VF , and the leaders’
states xi (k), vi ∈ VL, respectively. The convex hull spanned by the
states of leaders, and all states (i.e., both leaders and followers), are
then represented as Co


xL (k)


and Co (x (k)), respectively. Since

the leaders’ states are static, the convex hull Co

xL (k)


is constant,

while the convex hull Co (x (k)) is time varying and depends on
the states of the followers. The objective is to regulate the states of
followers to a desired region, which is a convex hull spanned by all
stationary leaders’ states (i.e., xi(k) → Co


xL (k)


), over a random

communication network.

3. Consensus algorithms

Consider the random graph G (k) = (V, E (k)) at tk. The
follower updates its state Xi(k), vi ∈ VF , according to

Xi (k + 1) = Xi (k) −


vj∈Ni(k)

Kg∆taij (k)

Xi (k) − Xj (k)


, (3)

where aij (k) is a random variable defined in (1), Kg ∈ R+ is a
control gain, ∆t is a small sampling time, and the time-varying set
Ni (k) ,


vj

 vj, vi


∈ E (k)

determines the set of the neighbors

of vi in G (k). Since the leaders are assumed to have desired
constant states,

xi (k + 1) = xi (k) , (4)

for ∀vi ∈ VL.
Note that Xi (k) is a random variable that evolves according

to the stochastic system of (3). Let {Xi (k)} be a Markov process.
Since the systems in (3) and (4) along different dimensions are
decoupled, for the simplicity of presentation, Xi (k) will be treated
as a scalar (d = 1) in the subsequent analysis, and the extension
of xi (k) to d dimensional states can be established by using the
Kronecker product. The system of (3) and (4) can be rewritten in a
compact form as
xL (k + 1)
XF (k + 1)


, Φ (k)


xL (k)
XF (k)


(5)

where Φ (k) ,

Ξ (k)
π (k)


, Ξ (k) ,


Im×m 0m×(n−m)


∈ Rm×n,

Im×m ∈ Rm×m denotes an identitymatrix, and the entries ofπ (k) ∈

R(n−m)×n are defined as

πil (k) =


1 −


vj∈Ni(k)

Kg∆taij (k) i = l
vj∈Ni(k)

Kg∆taij (k) vl ∈ Ni, i ≠ l

0, vl ∉ Ni (k) , i ≠ l.

(6)
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4. Convergence analysis

In this section, almost sure convergence of the followers’
states to the convex hull Co


xL


spanned by the leaders’ states

is established for the agreement protocol in (5) over the directed
randomgraphG. To facilitate the subsequent convergence analysis,
the definitions of almost sure convergence and supermartingale in
a probabilistic setting are introduced.

Definition 3 (Hatano &Mesbahi, 2005, Ch. 12). A random sequence
{Z (k)} in Rn almost surely converges to a setM , if for every ϵ > 0

lim
k0→∞

Pr

sup
k≥k0

dist (Z (k) , M) > ϵ


= 0, (7)

where dist (Z (k) , M) is defined in (2) representing the distance
of Z (k) to the set M. Almost sure convergence is also called
convergence with probability one (w.p.1).

Definition 4 (Grimmett & Stirzaker, 2001). Let (Ω, F , P) be a
measurable space. A filtration F0 ⊆ F1⊆ F 2 . . . ⊆ Fn is an
increasing subsequence of sub-σ -algebras of F . A sequence of
random variables Z (k) is adapted to a filtration Fk if Z (k) is Fk-
measurable for all k. The pair (Z, F ) is called a supermartingale if,
for all k ≥ 0,

E [Z (k)] < ∞ and E [Z (k + 1)| Fk] ≤ Z (k) , (8)

where E [Z (k)] denotes the expected value of the random variable
Z (k), and E [�| ♦] denotes the conditional expectation of some �
under the condition of some ♦.

The supermartingale sequence {Z (k)} in (8) indicates that the
current Z (k) provides an upper bound for the conditional
expectation E [Z (k + 1)| Fk] on the next time instant k + 1, and
limk→∞ Z (k) exists and is finite w.p.1. In addition, if the sequence
{Z (k)} is a nonnegative supermartingale withE [Z (k)] < ∞ in (8),
Z (k) converges w.p.1. to a limit (Kushner, 1971, Ch. 8).

4.1. Almost sure convergence

In contrast to most results developed for the deterministic
containment control (cf. Cao et al., 2012, Ji et al., 2008, Kan
et al., 2015, Li et al., 2012, Lou & Hong, 2012, Meng et al.,
2010, Notarstefano et al., 2011 and Mei et al., 2012) where
network connectivity is the key assumption to ensure consensus
(e.g., assuming a tree graph in directed or undirected graphs, or at
least assuming a tree graph in the union of graphs for switching
networks), the random setting in the current work does not make
an explicit assumption on network connectivity at each time.
The random graph G (k) can be either connected or disconnected
at each time tk. However, below we show that Assumptions 2
and 3 ensure that the followers have sufficient access to the
leaders’ information so that the followers’ states will almost surely
converge to the convex hull spanned by the leaders’ states.

Let V (x (k)) ∈ R+ be the volume of the convex hull Co (x (k))
spanned by all leaders’ and followers’ states at tk. The strictly
decreasing property of V (x (k)) over a finite step is proven in
Lemma 1 for the deterministic case of graph GT . For the stochastic
case that every edge


vj, vi


∈ E in G connects with a probability

pij > 0, Lemma 2 indicates that V (X (k)) is nonincreasing at each
time step. Based on Lemmas 1 and 2, almost sure convergence to
the convex hull Co


xL


for the stochastic system in (3) and (4) is

then proven by using convex properties (Boyd & Vandenberghe,
2004) and the stochastic version of LaSalle’s invariance principle
in Kushner (1971, Ch. 8).

Lemma 1. Consider the particular directed graph GT where every
potential edge in the random graphG = (V, E) is connected. Suppose
that Assumption 3 is satisfied, and the followers evolve according
to (3), where the control gain Kg is selected sufficiently small such that

j∈Ni
Kg∆taij (k) < 1. If there exists at least one node vi ∈ VF with

xi (k) ∉ Co

xL


, the volume of the convex hull Co (x (k)) will strictly

decrease over nf steps (i.e., Co

x

k + nf


⊂ Co (x (k)) where nf is

the number of followers).

Proof. Since every potential edge exists in GT , the stochastic
dynamics in (3) can be rewritten in a deterministic manner as

xi (k + 1) =

1 −


vj∈Ni

Kg∆taij (k)

 xi (k)

+


vj∈Ni

Kg∆taij (k) xj (k) , (9)

for vi ∈ VF . Here, the random set Ni (k) in (3) is replaced by a
constant set Ni determined by GT . Since Kg is selected sufficiently
small by assumption that


j∈Ni

Kg∆taij (k) < 1, xi(k + 1) is
a convex combination of


xj(k)


, vj ∈ vi ∪ Ni. Note that the

convex combination in (9) indicates that each vertex of Co (x (k))
at k + 1 can either remain in the same state or evolve to shrink
Co (x (k)) by moving into the interior or along the boundary of
Co (x (k)), resulting in Co (x (k + 1)) ⊆ Co (x (k)). To show that
the equality can be excluded in this set relation over nf steps (i.e.,
Co


x

k + nf


⊂ Co (x (k))), wewill prove that at least one vertex

of Co (x (k)) evolves to shrink Co (x (k)) over nf steps. Since the
existence of a node vi ∈ VF with xi (k) ∉ Co


xL


ensures that

Co(xL) ⊂ Co(x(k)), there always exists a vertex of Co(x(k)) formed
by followers only. Two cases for the component of such vertex are
considered.

Case 1: Consider a vertex of Co(x(k)) consisting of a single
follower vi ∈ VF such that xi (k) ∉ Co


xL


. Since GT contains a

directed path from VL to every node in VF , there exists at least
one node vj ∈ Ni either in the interior or on the boundary of
Co(x(k)) with a different state xj (k) ≠ xi (k). According to (3),
the vertex state xi (k + 1) will evolve either along the boundary
or to the interior of Co (x (k)) to shrink Co (x (k)), resulting in
Co (x (k + 1)) ⊂ Co (x (k)).

Case 2: Consider a vertex of Co(x(k)) consisting of multiple
followers {vi ∈ VF } with the same states and each xi (k) ∉ Co


xL


.

Let Sv be the set of followers that forms such vertex. Theworst case
is that Sv contains all followers vi, i ∈


1, . . . , nf


, with x1 (k) =

· · · = xnf (k). According to (3), for those nodes vi with Ni ⊂ Sv ,
xi (k + 1) = xi (k), due to xi (k) = xj (k), vj ∈ Ni. However, GT
ensures a directed path from VL to at least one node vj ∈ Sv with
vk ∈ Nj and vk ∉ Sv . Following (3), xj (k + 1) moves out of the
vertex either into the interior or along the boundary of Co (x (k)).
Due to the connected GT , there always exists a node vj in Sv with
at least one neighbor vk ∈ Nj and vk ∉ Sv . Repeating the above
process, the number of followers in Sv is strictly decreasing at each
update, and Case 2will reduce to Case 1with the vertex containing
a single follower for atmost nf steps, resulting in Co


x

k + nf


⊂

Co (x (k)) based on Case 1. �

Lemma 2. Let Qλ = {x ∈ Rn| V (x) ≤ λ} where λ > 0. Given that
the sequence {X (k)} evolves according to the dynamics in (3) and (4),
if x (0) starts in Qλ, X (k) ∈ Qλ for all k ∈ Z+ w.p.1., that is,

Pr


sup
0<k<∞

V (X (k)) > λ


= 0. (10)

Proof. To show (10), it suffices to show that V (X (k + 1)) ≤

V (X (k)). Let N̄i (k) denote the set of all potential neighbors of vi
on Gk. Consider a follower node vi ∈ VF with a neighbor set Ni (k)
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on Gk, where Ni (k) ⊆ N̄i (k) indicates the set of nodes that are
connected to vi at tk. Since each edge


vj, vi


∈ Ek, vj ∈ Ni (k),

is connected with a probability pij, the node vi may connect to
either a subset of nodes in N̄i or none of the nodes in N̄i. If vi
connects to at least one node inNi (k), according to Lemma 1, xi (k)
can either remain the same state or evolve to shrink the convex
hull formed by itself and its neighbors vj ∈ Ni (k), resulting in a
nonincreasing V (xk). If vi is isolated, which indicates that no edge
exists between vi and any other node in Ni (k), xi (k) will remain
the same and not lead to an increasing volume of the convex hull
Co (x (k)). Repeating this argument for every node in the graph Gk
indicates that V (X (k + 1)) ≤ V (X (k)). �

Theorem 1. Consider the random graph G = (V, E) that consists of
stationary leaders and dynamic followers described by the stochastic
system in (3) and (4). If Assumption3 is satisfied, the followers vi ∈ VF
will almost surely converge to the convex hull Co


xL


that is spanned

by the leaders states only.
Proof. The theorem is proven by using the stochastic version of
LaSalle’s invariance principle in Kushner (1971, Ch. 8) and convex
properties in Boyd and Vandenberghe (2004, Ch. 2). Consider a
time sequence Tm, m ∈ Z+, with Tm+1 − Tm = nf ∆t and T0 = t0.
First, we show that there exists a positively invariant set Q such
that if x (0) ∈ Q, then X (Tm) ∈ Q for all Tm ≥ 0. Second, the
volume of the convex hull Co (x (0)) is decreasing to the invariant
set E ⊆ Q where the volume of Co (X (Tm)) , X (Tm) ∈ E, stays
constant. It is then shown that M is the largest invariant set in E,
where M is the set of points in the convex hull Co


xL


formed by

stationary leaders only.
Let Q , Co (x (0)), where Co (x (0)) is the convex hull formed

by all initial states x (0). Since Lemma 2 indicates that X (k) ∈ Q
for all k ∈ Z+ w.p.1. if x (0) starts inQ,X (Tm) ∈ Q also holds for all
m ∈ Z+ w.p.1., indicating thatQ is indeed apositively invariant set.
To show that all the followers almost surely converge to the convex
hull Co


xL


, consider the auxiliary term δ (x (Tm)) ∈ R defined as

δ (x (Tm)) , V (x (Tm)) − E [V (X (Tm+1))|X (Tm) = x (Tm)] . (11)

In (11), the state x (Tm) evolves according to (5) by following a
sequence of nf random graphs, where, by Assumption 1, each
random graph stays constant for a period of ∆t over the interval
[Tm, Tm+1] = nf ∆t . To capture all possible sequences of the

evolution from x (Tm) to x (Tm+1), let Ḡ′
=


G′

1, . . . , G′

MT


denote

the finite set of all possible sequences over [Tm, Tm+1], whereMT ∈

Z+ denotes the cardinality of Ḡ′ (i.e., MT =
Ḡ′

) and each entry
G′

i ∈ Ḡ′, i ∈ {1, . . . ,MT }, denotes a possible sequence that contains
nf graphs (i.e.,G′

i ∈
nf

i=1 Ḡ). Let p′

i , Pr

G′

i ∈ Ḡ′

be the probability

of the occurrence of the sequence G′

i in Ḡ′.
Given the definition of the Ḡ′ and the associated probability for

each entry in Ḡ′, the conditional expectation in (11) is computed as

E [V (X (Tm+1))|X (Tm) = x (Tm)] =

MT
j=1

V

Φ ′

j x (Tm)

p′

j, (12)

where Φ ′

j =
nf

i=1 Φi corresponds to the combined state transition
matrix associated with the sequence G′

j in Ḡ′, and each Φi is the
corresponding state transition matrix in (5) for the random graph
at


tnf m, tnf m + i∆t


. Let G′

T be a path in Ḡ′ that consists of GT only.
By Assumption 2, the probability p′

T that GT occurs consecutively
nf times in G′

T during [Tm, Tm+1] is strictly greater than zero,
p′

T > 0. The strict decreasing property of V

Φ ′

T x (Tm)

p′

T is then
established by Assumption 2 and Lemma 1, where Φ ′

T indicates
the state transition matrix corresponding to G′

T ∈ Ḡ′. For those
entries G′

j ∈ Ḡ′ other than G′

T , the convex properties ensure
that each V


Φ ′

j x (Tm)

, j ∈ {1, . . . ,MT } and j ≠ T in (12)
is a nonincreasing function as shown in Lemma 2. Hence, when
considering all possible graphs in Ḡ,

E [V (X (Tm+1))|X (Tm) = x (Tm)] < V (x (Tm)) ,

which indicates that the sequence of {V (X (Tm))} is a super-
martingale. Since {V (X (Tm))} is a nonnegative supermartingale
and bounded in Q, based on Definition 4 and Theorem 1 in Kush-
ner (1971, Ch. 8), V (X (Tm)) will decrease to a limit, which indi-
cates that the convex hull Co (X (k)) will shrink to an invariant set
as m → ∞.

Let E be the invariant set of all points in Q, where the volume
of Co (X (Tm)) , X (Tm) ∈ E, stays constant. Based on LaSalle’s
Theorem, the largest invariant setM must be established, whereM
is the set of points in the convex hull Co


xL


formed by stationary

leaders only. A proof by contradiction is used to show that M (i.e.,
Co


xL


) is the largest invariant set. LetM ′

⊃ M be a larger invariant
set in E. Suppose that there is a follower whose state xi ∉ M , and
xi is on the boundary of M ′, while the other followers xj ∈ M ,
vj ∈ VF − {vi}. Since M ′

⊂ E, the volume of the set M ′ stays
constant. The only way for the volume of M ′ to stay constant is
that xi (t) stays constant for all t ≥ 0. However, for this to happen,
the follower vi must be isolated from the group for all t ≥ 0. This
isolation is a contradiction with Assumption 2. Hence, M is the
largest invariant set. A stochastic version of LaSalle’s invariance
principle in Kushner (1971, Ch. 8) can now be invoked to ensure
almost sure convergence of the followers’ states to the largest
invariant setM (i.e., the convex hull Co


xL


). �

Remark 1. Containment control for a multi-agent system has
received significant focus (cf. Cao et al., 2012, Ji et al., 2008,
Kan et al., 2015, Li et al., 2012, Lou & Hong, 2012, Mei et al.,
2012, Meng et al., 2010, Notarstefano et al., 2011 and Wang
et al., 2014). However, few results investigate collision avoidance
among agents in containment control over either deterministic or
stochastic communication networks. In our previous work (Kan
et al., 2015), containment control is applied to a deterministic
social network to regulate the emotional states of individuals to a
desired end. Tomaintain the social bondwithin a desired threshold
(i.e.,

qi (t) − qj (t)
 ≤ δ, where qi and qj denote the time-varying

social states of individual i and j, respectively, and δ ∈ R+ denotes
the threshold), a navigation function based framework from Kan,
Dani, Shea, and Dixon (2012) is developed to ensure existing social
influence between individuals during network evolution. Since
ensuring collision avoidance among agents (i.e.,

xi (t) − xj (t)
 ≥

ξ , where xi and xj denote the time-varying positions of agent
i and j, respectively, and ξ ∈ R+ denotes a safe inter-agent
distance) is analogous to maintaining existing social influence
between individuals, the approach developed in Kan et al. (2015)
could be modified to handle collision avoidance among agents
in containment control. In another recent work (Cheng, Kan,
Rosenfeld, Parikh, & Dixon, 2014), a navigation function based
distributed controller is developed for a multi-agent system to
perform formation control with ensured collision avoidance over
an intermittent sensing network where the agents suffer random
loss of inter-agent sensing and communication. Based on the
stochastic analysis framework developed in the present work, the
approach developed in Cheng et al. (2014) could also be extended
for collision avoidance in containment control over stochastic
communication networks.

5. Simulation

A graph of 100 nodes in a two-dimensional coordinate space
is considered, where the states of nodes are their locations in the
two-dimensional coordinate space. The followers and the leaders
form a directed graph, represented by the dots and squares in
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Fig. 1. Node trajectories plot. The followers’ states converge to the convex hull
formed by stationary leaders, where the leaders’ states are denoted as squares, and
the followers’ initial and final states are denoted by circles and dots, respectively.

Fig. 1, respectively. To show random loss of the communication
links, a two-stateMarkovModelwith independent edges is applied
to represent the evolution of the edge states. Particularly, each
edge (i, j) will change its current state (i.e., from connection
to disconnection or from disconnection to connection) with
probability pij and will remain in the current state (i.e., connection
or disconnection) with probability 1 − pij. Consider the case
that pij ∈ (0, 1) is randomly generated for each edge in the
graph. Fig. 1 indicates that the followers converge to the locations
inside the convex hull spanned by the stationary leaders on the
given random graph. We also compared the performance of the
same graph with different connection models and the results are
shown in Fig. 2. In the comparison, all graphs start from the
same initial graph and differ in how the edge connections are
evolved according to the two-state Markov Model. The solid line
in Fig. 2 indicates the evolution of Co (x) for a fixed connection
model where all potential edges are connected all the time. The
dashed and dot-dashed lines in Fig. 2 represent the evolution of
Co (x) for the Markov Model with independent edges that each
edge (i, j) fails or succeeds with high state transition probability
pij ∈ [0.95, 1) and low state transition probability pij ∈ (0, 0.05],
respectively. The dot line shows a Markov Model with dependent
edges that all fail or succeed at the same time, where the stationary
state probabilities are generated randomly from a uniform (0, 1)
distribution. As expected, the performance of the fixed graph
outperforms other connection models, since constant information
exchange is available all the time. However, such a fully connected
graph appears rarely in a random network that evolves according
to the two-state Markov Model (e.g., appearing only 4 times for
a simulation of 15,000 times). Note that the algorithm developed
in the current work can achieve the same containment result
without requiring the graph to be regularly fully connected, as
shown in Fig. 2. The graph with dependent edges and the graph
with high state transition probability behave similar to each other,
converging to the convex hull Co


xL


at about the same speed. The

graph with low state transition probability takes the longest time
to converge, since the graph may run into a disconnected graph
and stay there for a relatively long time due to its low probability
in state transition, as shown by the non-strictly decreasing dot-
dashed line.

6. Conclusion

Leader–follower containment control on random graphs is ex-
amined. The underlying random network is assumed to evolve ac-
cording to a two-stateMarkovModel, and the followers are proven
Fig. 2. The evolution of the volume of the convex hull Co (x) for the graph with
different connection models.

to converge to the convex hull spanned by the stationary leaders
w.p.1. The simulation results demonstrate the convergence of all
followers to the convex hull Co


xL


over random networks. Al-

though convergence on randomgraphs is established, convergence
speed is not investigated in the current work. Since the conver-
gence speed of consensus highly relies on the topology of the un-
derlying communication network, additional work will examine
the topology design to increase the convergence speed for the de-
veloped leader–follower containment control on random graphs.
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